Friday, 06 Aug 2021
Emanuele Giordano

Emanuele Giordano

Emanuele D. Giordano is an Italian Biomedical Scientist, affiliated with the Alma Mater Studiorum – Università di Bologna. He earned his MD degree (with Honours) at the Università di Roma “La Sapienza” in 1985. He received his PhD (1997) degree in Biochemistry at the Alma Mater Studiorum – Università di Bologna. More

Microenvironmental signals control hybrid EMT phenotypes

Multidisciplinary approaches prove to be helpful to investigate microenvironmental signals driving cancer cell molecular phenotype. Epithelial to Mesenchymal transition (EMT) has a pivotal role in cancer progression and metastasis formation. Coupling in silico and in vitro analyses, this manuscript gains an insight in the signal transduction cascades driven by a stiff extracellular matrix to ...

Phenotypic variability in synthetic biology applications

The stochasticity due to the infrequent collisions among low copy-number molecules within the crowded cellular compartment is a feature of living systems. Single cell variability in gene expression within an isogenic population (i.e. biological noise) is usually described as the sum of two independent components: intrinsic and extrinsic stochasticity. Intrinsic stochasticity arises from the ...

Mathematical models predict the behavior of modular synthetic gene circuits

Most of synthetic circuits developed have been designed by an ad hoc approach, using a small number of components (i.e. LacI, TetR) and a trial and error strategy. We are at the point where an increasing number of modular, inter-changeable and well-characterized components is needed to expand the construction of synthetic devices and to allow a rational approach to the design. The use of ...

Synthetic post-transcriptional control of gene expression

Post-transcriptional regulation allows a faster control of gene expression, which might result relevant in the design of synthetic gene circuits. However, synthetic biologists are warned to give the proper consideration to functional modularity of biological parts and the need for a case-to-case characterization of their function, raising concern about the use of a overconfident bottom-up ...